High Order Fluctuation Schemes on Triangular Meshes
نویسندگان
چکیده
We develop a new class of schemes for the numerical solution of first-order steady conservation laws. The schemes are of the residual distribution, or fluctuation-splitting type. These schemes have mostly been developed in the context of triangular or tetrahedral elements whose degrees of freedom are their nodal values. We work here with more general elements that allow high-order accuracy. We introduce, for an arbitrary number of degrees of freedom, a simple mapping from a low-order monotone scheme to a monotone scheme that is as accurate as the degrees of freedom will allow. Proofs of consistency, convergence and accuracy are presented, and numerical examples from second, third and fourth-order schemes.
منابع مشابه
Non-oscillatory third order fluctuation splitting schemes for steady scalar conservation laws
This paper addresses the issue of constructing non-oscillatory, higher than second order, fluctuation splitting methods on unstructured triangular meshes. It highlights the reasons why existing approaches fail and proposes a procedure which can be applied to any high order fluctuation splitting scheme to impose positivity on it. Its success is demonstrated through application to a series of lin...
متن کاملCentral WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes
We derive Godunov-type semidiscrete central schemes for Hamilton–Jacobi equations on triangular meshes. High-order schemes are then obtained by combining our new numerical fluxes with high-order WENO reconstructions on triangular meshes. The numerical fluxes are shown to be monotone in certain cases. The accuracy and high-resolution properties of our scheme are demonstrated in a variety of nume...
متن کاملMaximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملUnification of Some Advection Schemes in Two Dimensions
In this paper a relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of tile control volume type applicable on structured cartesian meshes. It resulted (see [14], [15]) in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases...
متن کاملADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws
ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 19 شماره
صفحات -
تاریخ انتشار 2003